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VOCs and Air Quality


•	 Volatile Organic Compounds (VOCs) enter the atmosphere from 
a variety of anthropogenic and biogenic sources 

•	 Impacts of VOCs on air quality include: 
•	 Direct effects (for toxic VOCs very near large sources) 
•	 Formation of toxic or persistent oxidation products 
•	 Promotion of ground-level ozone formation 
•	 Contribution to secondary particle matter (PM) formation 

•	 Contribution to ground-level ozone has been the major factor 
driving VOC regulations in the U.S. 
•	 Models calculate large VOC reductions are needed to 

achieve air quality standards in urban areas 
• NOx reduction is more important to reducing regional ozone 

•	 But need to reduce PM is also a priority. Secondary Organic 
Aerosol (SOA) from reactions of VOCs contributes to fine PM. 
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Mechanism of VOCs Impact on O3 

•	 Ground level O3 is actually formed from the photolysis of NO2, 
with O3 in a photostationary state relation with NO and NO2: 

NO2 + hν → O(3P) + NO	 Overall: 
O(3P) + O2 → O3	 hν 

NO2 + O2 ⇔ O3 + NO
O3	 + NO → O2 + NO2 

•	 VOCs promote O3 by forming radicals that convert NO to NO2 
and shift the photostationary state towards O3 formation, e.g.: 

RH + OH → H2O + R 

Overall: 
R  + O2 → RO2 hν, NOx, O2RO2 + NO → RO + NO2 VOC + O2 → → → O3 + products 

RO → → HO2 + other products 
HO2 + NO → OH + NO2 
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Factors Affecting Impacts of VOCs on O3


•	 Ground level O3 is formed from the reactions of NOx. But without 
VOCs O3 levels are low because of its reaction with NO. 

•	 VOCs differ significantly in their effects on O3 formation 
Mechanistic factors affecting ozone impacts are: 
•	 How fast the VOC reacts 
• NO to NO2 conversions caused by VOC’s reactions 
•	 Effect of reactions of VOC or its products on radical levels 
•	 Effects of reactions of VOC or its products on NOx levels 

•	 The effect of a VOC on O3 also depends on where it reacts 
•	 The availability of NOx. (NOx necessary for O3 to form.) 
•	 The amount of time the VOCs have to react 
•	 The sensitivity to radical levels 

•	 Models must take these factors into account to evaluate effective 
VOC control strategies to reduce O3. 
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Factors Affecting Impacts of VOCs on 

Secondary PM


•	 Many VOCs form low volatility oxidation products that can 
partition into the aerosol phase and contribute to secondary PM 

•	 Some higher volatility products may also partition into the aerosol 
phase due to heterogeneous reactions 

•	 The yields of condensable products varies from compound to 
compound and may also vary with atmospheric conditions 

•	 Identity, yields, formation mechanisms, and partitioning 
coefficients of condensable products are mostly unknown for
most VOCs 

•	 Data and mechanistic knowledge are inadequate for models to 
predict secondary PM from VOCs with any degree of reliability. 

•	 Inadequately tested and highly simplified parameterized models 
are used for predicting effects of emissions on secondary PM 
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Importance of Environmental Chamber Data 

to Air Pollution Models


•	 Chemical mechanisms are needed for models to predict 
effects of VOCs on secondary pollutants such as O3 and PM 

•	 Mechanisms in current airshed models have many uncertain 
estimates, simplifications and approximations 

•	 Environmental chambers, simulating atmospheric reactions
under controlled conditions, are essential to: 
•	 Develop predictive mechanisms when basic mechanistic 

data insufficient. 
•	 Testing approximations and estimates in mechanisms for 

almost all VOCs under simulated atmospheric conditions 
•	 Testing entire mechanisms under the necessary range of 

conditions 

•	 Results of experiments are influenced by chamber effects, so 
developing an appropriate chamber effects model is important 
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Relationship Between Mechanisms, 

Chamber Data and Airshed Models


Basic kinetic and 
mechanistic data 
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UCR Project to Investigate Atmospheric 

Reactivities of Selected Pesticide VOCs


Background 

•	 Data are not available concerning O3 and PM impacts for many 
types of pesticide VOCs used in California. Therefore, estimates 
of these impacts are very uncertain 

Objectives 

•	 Reduce uncertainties in estimates of O3 impacts for pesticides 
used in California 

•	 Obtain qualitative information on relative PM impacts or 
representative pesticide VOCs 

•	 Make recommendations on how to represent pesticide VOCs in 
airshed models 
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UCR Project to Investigate Atmospheric 

Reactivities of Selected Pesticide VOCs


Approach 

•	 Assess available information and select representative 
pesticide-related compounds most in need of study 

•	 Conduct environmental chamber experiments to develop 
mechanisms for predicting O3 impacts of the studied compounds 

•	 Incorporate mechanisms for these and related compounds into 
the overall mechanism used to predict ozone impacts of VOCs. 

•	 Derive ozone impacts of the pesticides in various O3 reactivity 
scales, including the MIR scale used in California regulations 

•	 Obtain data on relative PM impacts of the studied compounds, 
and compare them with other compounds studied previously 
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Volatile Compounds in Pesticide Profile in 

2000 California VOC Emissions Inventory


Compound Wt. % Structure Comments 

Methyl Bromide 25% CH3Br Very low reaction rate 

Methyl Isothiocyanate 18% CH3NCS No mechanism. 
Reaction rate known 

1,3-Dichloropropenes 11% ClCH=CHCH2Cl Some mechanistic data 
available 

Chloropicrin 9% CCl3NO2 Previously studied 

Aromatic 200 Solvent 5% Aromatic Mixture Accuracy of existing 
mechanism uncertain 

Xylene Solvent 5% xylene isomers Previously studied 

Various 
Thiocarbamates 

~4% Compounds with 
>NC(O)S- group 

Some kinetic and 
mechanistic data 
available 
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Volatile Compounds in Pesticide Profile in 

2000 California VOC Emissions Inventory


(continued) 

Compound Wt. % Structure Comments 
Kerosene 2% Hydrocarbon 

mixture 
Some data on 
lighter mixtures 

Chlorpyrifos 2% Volatility too low to 
study (vp ~30 ppt) 

Methy isobutyl ketone 1% CH3C(O)CH2CH(CH3)CH3 Previously studied 

Acrolein 0.7% CH2=CHCHO Previously studied 

Glycerine 0.5% HOCH2CH(OH)CH2OH Mechanism can be 
estimated 

Propylene Glycol 0.5% CH3CH(OH)CH2OH Previously studied 

N-methyl 
pyrrolidinone 

0.5% Previously studied 
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Pesticide Related VOCs Chosen for Study 

Methyl Isothiocyanate 

•	 Highest emissions in profile with non-negligible reaction rate. 

•	 No mechanisms have been derived or  evaluated for 
isothiocyanates. 

1,3-Dichloropropenes 

•	 2nd highest in profile with non-negligible reaction rate. 

•	 Mechanisms of halogenated compounds are uncertain 

EPTC (S-ethyl N,N-di-n-propyl thiocarbamate) 

•	 Chosen as a representative thiocarbamate. 

•	 Some kinetic and mechanistic data available, but no data to 
evaluate mechanisms for thiocarbamates 

continued ... 
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Pesticide Related VOCs Chosen for Study

(continued) 

Kerosene 

•	 Highest emissions in profile of hydrocarbon solvents 

•	 Complex mixture of C8-C18 alkanes (82%) and aromatics (18%) 

•	 Data available to test mechanisms for “mineral spirits” and other 
hydrocarbon solvents used in coatings, but not kerosene. 

•	 Mechanism derived based on speciation data provided by 
ExxonMobil Process Laboratories in Baton Rouge, LA 

Carbon Disulfide (CS2) 

•	 Known to be important as a pesticide breakdown product 

•	 Kinetic and mechanistic data available, but no data available to 
evaluate mechanisms for ozone and PM impacts. 
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Thiocarbamate Pesticides


EPTC (0.5%) Molinate (3.3%) 

Representative compound Being phased out so priority for 
chosen for study study reduced 

Mechanism derived and Mechanism estimated based on 
evaluated using results of mechanism derived for EPTC 
experiments for this project 

continued ... 
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Thiocarbamate Pesticides (continued)


Thiobencarb (0.5%)Pebulate (0.4%) 

Mechanism estimated based on Mechanism estimated based on 
mechanism derived for EPTC mechanisms derived for EPTC 

and toluene 
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Environmental Chamber Experiments


Purpose 

•	 Provide data to test ability of mechanisms to predict O3 impacts 

•	 Obtain qualitative information on relative PM impacts 

•	 Obtain data on relevant VOC rate constants, where needed 

Types of Experiments 

•	 Incremental reactivity experiments: Add test compound to 
reactive organic gas (ROG) surrogate - NOx irradiations 
simulating ambient conditions 

•	 Single VOC - NOx irradiations where useful 

•	 UCR EPA chamber (with blacklight light source) employed 

W. P. L. Carter      5/24/2007 Pesticide Reactivity Research	 16 



Characteristics of New UCR EPA Chamber


•	 Indoor chamber design used for maximum control and 
characterization of conditions 

•	 Dual reactor design for experimental productivity and to simplify 
reactivity assessment 

•	 Largest practical volume for indoors (two ~100,000-L reactors) 

•	 Blacklights or argon arc solar simulator light sources 

•	 Teflon reactors in “clean room” to minimize background 

•	 Positive pressure reactor volume control to minimize contamination 

•	 Temperature controlled to ±1oC in ~5oC to ~50oC range. 

•	 Large array of analytical instrumentation 

•	 Instrumentation for monitoring PM formation 
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Diagram of UCR EPA Chamber
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Photographs of Chamber and Lights

Looking Towards Reactors (from light) Looking Towards Lights and Air Inlet 
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Chemical Mechanism Development


SAPRC-99 chemical mechanism used as starting point 

•	 Used in airshed models to calculate reactions of emitted VOCs 
and their impacts on O3 and other pollutants 

•	 Used to calculate O3 reactivity scales for ~800 types of VOCs, 
including the MIR scale used in CARB’s reactivity regulations 

•	 Did not previously include reactions for the representative 
pesticide VOCs chosen for study 

Pesticide VOC reactions added to SAPRC-99 mechanism 

•	 Preliminary mechanisms derived for the pesticide VOCs based 
on available literature data and estimates 

•	 Mechanisms refined and adjusted as needed based on results 
of experiments for this project 
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Results of Selected Experiments

EPA589: Surrogate + MITC
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Results of Selected Experiments (continued) 

EPA551B: 0.4 ppm 1,3-Dichloropropenes + 50 ppb NOx 
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Results of Selected Experiments (continued)


EPA590: Surrogate + EPTC


∆([O3]-[NO]) (ppm) ∆([O3]-[NO]) Change Integrated OH (ppt-min) 
0.16 

0.12 

0.08 

0.04 

0.00 

0.01 30 
0.00 

20-0.01 

-0.02 
10 

-0.03 

-0.04 0 
0 120 240 360 0 120 240 360 0 120 240 360 

Irradiation time (minutes) 
Base Experiment (25 ppb NOx, 1 ppmC ROG surrogate) 
Model simulation of base experiment 
Experiment with 0.25 ppm EPTC added

Model simulation of added EPTC experiment


W. P. L. Carter      5/24/2007 Pesticide Reactivity Research 23 



Results of Selected Chloropicrin Experiment 

(Carried out for a previous project)
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Mechanism Development Results


Mechanisms were derived for MITC, EPTC, and CS2 that were 
consistent with the chamber results 

•	 Data used to obtain rate constants for OH + MITC and to refine 
the rate constant for OH + EPTC 

•	 Uncertain aspects of mechanisms for MITC, EPTC, and CS2 
had to be adjusted to satisfactorily simulate the chamber data 

•	 Mechanism derived for EPTC were used to derive estimated 
mechanisms for molinate, pebulate, and thiobencarb, 

The model for Kerosene based on analysis by ExxonMobil 
gave satisfactory simulation of the chamber results 

continued ... 
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Mechanism Development Results (continued) 

Mechanisms were derived for the 1,3-dichloropropenes and 
chloropicrin that were consistent with chamber results 

•	 Chlorine chemistry was added to the SAPRC-99 mechanisms to 
permit representation of these chlorine-containing compounds 

•	 It is necessary to explicitly represent chloroacetaldehyde to 
correctly simulate dichloropropene reactivity. This has 
implications for mechanisms for chlorinated VOCs in general. 

•	 An updated mechanism for chloropicrin developed and found to 
give good simulations of experiments carried out previously. 

The mechanisms developed for these pesticide compounds 
are being incorporated in the updated SAPRC-07 mechanism 
that is nearing completion 

W. P. L. Carter      5/24/2007 Pesticide Reactivity Research	 26 



Ozone Reactivity Scales 
Incremental reactivity scales provide a means to quantify relative 
differences among VOCs in their O3 impacts 

O3 formed when VOC O3 formed in model of
Incremental added to the scenario 

-
an ambient scenario

Reactivity of = 
VOC Amount of VOC Added 

Incremental reactivities depend on ambient conditions. Different 
scales can be derived to represent different types of conditions 
•	 MIR scale: Conditions where O3 is most sensitive to VOCs 

•	 EBIR scale: Conditions where O3 is equally sensitive to VOCs 
and NOx 

The CARB uses the MIR scale in several reactivity-based VOC 
regulations 
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Representative MIR and EBIR Reactivities


O3 Reactivity 
Compound or Mixture (Mass Basis) 

MIR EBIR 
Ambient Emissions Mixture 3.6 0.8 
1,3-Dichloropropenes 4.3 0.9 

Calculated 
Chloropicrin 1.9 1.2 using new
EPTC 1.6 0.5 SAPRC-07 
Kerosene 1.5 0.3 Mechanism 
MITC 0.3 0.2 
Ethane * 0.3 0.13 
Carbon Disulfide 0.2 0.13 
Methyl Bromide 0.02 0.01 

* Used by the EPA as the standard to define “negligible” reactivity
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PM Measurements in the UCR EPA Chamber


•	 PM Measurements are being made in conjunction with most 
UCR EPA chamber experiments. PM alternately sampled from 
each of the two reactors, switching every 10 minutes 

•	 Number densities of particles in 71 size ranges (28 - 730 nm) 
measured using a a Scanning Electrical Mobility Spectrometer. 
Data used to compute particle number and volume densities 

•	 Background PM formation now less than 0.5 µg/m3. (Was up to 
2 µg/m3 in Reactor A before it was replaced) 

•	 Most experiments to date are unhumidified with no seed aerosol 

•	 PM measurements made during reactivity experiments with 
representative architectural coatings and pesticide VOCs. 
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Representative PM Data 
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Relative PM Formation In

Surrogate - NOx + Test VOC Experiments
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Conclusions


•	 Uncertainties in estimates of O3 impacts of important types of 
pesticides used in California have been reduced 

•	 Information has been obtained to improve O3 impact estimates 
for Sulfur- and Chlorine-containing compounds in general 

•	 Pesticide reactivities have been added to reactivity scales that 
can be used for regulatory applications 

•	 Information has been obtained concerning differences in PM 
impacts of representative pesticides 

•	 Uncertainties remain in mechanisms for many types of VOCs 

•	 Improved mechanisms and data are needed to quantitatively 
predict PM impacts in models 

•	 Air quality impacts of very low volatility pesticides are uncertain 
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